
A Multi-Language Content-Based Music Recommendation System
Using Spotify Audio Features

Vaibhav Garg, Saher Dev, Swayam, Arnav Kataria, Tanisha Sonkar

Indian Institute of Technology Jodhpur
{b23cm1046, b23cs1059, b23ee1073, b23ee1083, b23ee1074}@iitj.ac.in

Abstract

This paper presents a content-based multilingual song
recommendation system developed using unsupervised ma-
chine learning techniques.Designed to support five lan-
guages—Hindi ,Tamil ,Korean, English ,and a miscella-
neous type—the system takes a user’s input of a language
and a specific song title, and identifies similar songs within
that language to ensure linguistic and cultural relevance.
To build the recommendation engine, we curated a dataset
of 61,711 songs across the supported languages using Kag-
gle as our source. Audio features such as tempo, valence,
energy, acousticness, and danceability were extracted and
standardised. We then applied Kernel Principal Component
Analysis (Kernel PCA) with an RBF kernel to reduce dimen-
sionality while preserving non-linear feature relationships.

The reduced feature set was clustered using K-Means,
which produced more distinct and meaningful groupings
than DBSCAN. K-Means was fine-tuned by using K-
Means++ for centroid initialization and the Elbow Method
by analyzing the Within-Cluster Sum of Squares (WCSS)
to determine the optimal number of clusters per language,
while the best epsilon values were used for DBSCAN for
comparison.Once clusters were formed, cosine similarity
was employed within the relevant cluster to retrieve songs
most similar to the user’s input track. This hybrid approach
ensures that recommendations are both musically coherent
and computationally efficient. The system consistently de-
livered results aligned with user preferences in mood, genre,
and rhythm. Future improvements may include integrating
lyrics-based features, deep learning models for better em-
beddings, and user feedback mechanisms to enhance per-
sonalization further.

1. Introduction
Music plays an important role in the daily lives of stu-

dents, serving as a companion during study sessions and
leisure activities. Identifying songs that match personal in-
terests can be time-consuming and inefficient on streaming
platforms with millions of tracks available. This project
aims to simplify the music discovery process by employing

fundamental machine learning techniques to produce per-
sonalized song recommendations. Through the analysis of
a user-specified track’s acoustics and various musical ele-
ments, our algorithm finds and recommends seven songs
that are highly compatible with the user’s taste in music,
improving their listening experience with no effort.

2. Dataset
2.1. About the Dataset

The dataset for this project is sourced from � Kag-
gle’s Spotify Tracks Dataset , which includes details such
as artist names, release years, and various audio features
used to train the model.

2.2. Data Preprocessing

To prepare the data for model training and clustering, the
following preprocessing steps were applied:

• Removed columns other than audio features that were
not required for model training.

• Re-indexed the data after removing languages such as
Telugu and Malayalam that did not contribute signifi-
cantly to ensure easy access.

• Handled duplicates and missing values by dropping
them to maintain data consistency.

• Categorical features (key, time signature) were
processed using OneHotEncoder to convert them into
binary vectors to make sure model does not capture
any irrelevant relationship between these features.

• Standardized numerical features (year,
popularity, duration ms, loudness,
tempo) using StandardScaler to achieve zero
mean and unit variance to make sure one feature does
not dominate others because of its magnitude.

• Left pass-through features (e.g., acousticness,
danceability, energy, etc.) unchanged, as they
are already normalized between 0 and 1.

• Songs belonging to the same language were stored in
separate files along with their audio features after scal-
ing .

https://www.kaggle.com/datasets/gauthamvijayaraj/spotify-tracks-dataset-updated-every-week
https://www.kaggle.com/datasets/gauthamvijayaraj/spotify-tracks-dataset-updated-every-week


Table 1. Dataset Features and Their Incorporation in Predictive Modeling

Feature Feature Description DataType Incorporation in Pre-
dictive Modeling

track id Spotify’s unique identifier for the track object No
track name Name of the track object No
artist name Names of the artists who performed the track object No
year Year of release int64 Yes
popularity Popularity score of the track int64 Yes
artwork url URL of the album or track’s artwork object No
album name Name of the album object No
acousticness Confidence measure of whether the track is acous-

tic (0.0 to 1.0)
float64 Yes

danceability Suitability for dancing (0.0 = least, 1.0 = most) float64 Yes
duration ms Duration of the track in milliseconds float64 Yes
energy Intensity and activity level (0.0 to 1.0) float64 Yes
instrumentalness Likelihood of the track containing no vocals float64 Yes
key Musical key using standard pitch class notation

(e.g., 0 = C)
float64 Yes

liveness Likelihood the track was recorded live float64 Yes
loudness Overall loudness in decibels (dB) float64 Yes
mode Modality (1 = major, 0 = minor) float64 Yes
speechiness Presence of spoken words (closer to 1.0 = more

speech)
float64 Yes

tempo Speed in beats per minute (BPM) float64 Yes
time signature Beats per measure (typically 3 to 7) float64 Yes
valence Positivity or musical happiness of the track float64 Yes
track url Spotify URL link to the track object No
language Language of the lyrics (English, Tamil, Hindi, Tel-

ugu, Korean)
object Yes

2.3. Dataset Features

Each song in the dataset contains audio features that are
essential for training clustering algorithms. The key fea-
tures include the above.

3. Dimensionality Reduction

To reduce the dimensionality of our dataset in order to vi-
sualize clusters and understand data distribution, we applied
both Principal Component Analysis (PCA) and Kernel
PCA. Below, we compare the results and their effective-
ness:

3.1. Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique that
projects data along directions (principal components) that
maximize variance. It assumes that data lies on a linear
subspace, which may not always be true in real-world high-
dimensional datasets like music features where data distri-
bution is non linear.

Figure 1. PCA visualization of audio features. The clumping near
origin shows limited separation due to linearity.

As shown in the PCA visualization, data points have
dense distribution near origin and variance along one com-
ponent is significantly higher than other one.This indicates
that while PCA captures some variance, it might not be fully
effective in separating complex patterns in the data due to



its non linear nature.

3.2. Kernel PCA with RBF Kernel

Kernel PCA extends PCA by using kernel functions (in
our case, the RBF kernel) to map the data into a higher-
dimensional space where it may become linearly separable.
This allows Kernel PCA to capture non-linear relationships
between features, which are common in audio data.

Figure 2. Kernel PCA visualization of audio features. Figure
shows that data distribution is dense and evenly spread out.

The Kernel PCA plot shows a much more even and
roughly a circular spread where along the two components
variance is comparable suggesting that the technique cap-
tures the non-linear relationship of audio features better in
two dimensions. This structure is likely to enhance the per-
formance of clustering algorithms applied afterward.

3.3. Comparison

In conclusion, although PCA is simpler and computa-
tionally faster, Kernel PCA proved to be more effective for
our dataset due to its ability to uncover complex patterns in
non-linear data and giving us a more dense and uniformly
spread distribution, making it a more suitable and effective
choice for clustering techniques.

4. Clustering Approaches
We tested two clustering algorithms that come under Un-

supervised Learning: DBSCAN and K-Means.

4.1. K-Means Clustering

K-Means was applied on the Kernel PCA-reduced data.

Figure 3. Kmeans with KPCA reduced data

We realized that reducing dimensionality might lead to
loss of important characteristics required to determine simi-
lar songs, Hence model was applied on scaled models only.
The results for PCA were visualized using a 2D scatter
plot, showing well-separated groupings of songs.We imple-
mented K-Means from scratch, with automatic k selection
for each language subset of the dataset.

Figure 4. K-Means visualization of clusters by language.Each sub-
plot shows how songs are grouped in the feature space for a spe-
cific language,indicating effective separation.

4.1.1 K-Means++ Initialization

To avoid poor clustering due to random initialization, we
employed the K-Means++ algorithm for centroid initial-
ization.This technique selects the initial centroids randomly
and all the subsequent centroids with a probability propor-
tional to their squared distance from the nearest already cho-
sen centroid. This significantly improves clustering quality
compared to naive random initialization.

Figure 5. Random Vs KMeans++ Centroid initialisation

4.1.2 Custom K-Means Implementation

Our implementation iteratively assigns each data point to
the nearest centroid using Euclidean distance. After assign-
ing points, new centroids are computed as the mean of all
points in each cluster. This process repeats until the cen-
troids converge or a defined maximum number of iterations
is reached. A small convergence threshold (tolerance) is
used to determine early stopping when centroid movements
become negligible. (tol=1e-4)

4.1.3 Selecting Optimal Number of Clusters

Rather than predefining the number of clusters, we auto-
mated the selection of k using the Elbow Method.For val-
ues of k ranging from 1 to a maximum(in our case 6),
the algorithm computes the Within-Cluster Sum of Squares
(WCSS), also known as inertia, which quantifies the com-
pactness of clusters.



WCSS =

k∑
j=1

∑
xi∈Cj

∥xi − µj∥2 (1)

We then identify the “elbow point” on the WCSS vs. k
plot by finding the point where the decrease in WCSS starts
to slow down noticeably which looks like an ”elbow” in
the curve.It represents the optimum k number of clusters
because adding more clusters beyond this does not improve
the grouping much.

Figure 6. Elbow curve used to find optimal number of clusters for
Hindi songs.

This procedure is repeated for each language-specific
subset to derive language-specific k values, enhancing rec-
ommendation relevance within linguistic contexts.

4.1.4 Dunn Index for Cluster Validation

In addition to WCSS, we used the Dunn Index to validate
cluster quality. The Dunn Index is defined as the ratio be-
tween the minimum intercluster distance and the maximum
intracluster distance.

DunnIndex =

min
1≤i<j≤k

δ(Ci, Cj)

max
1≤l≤k

∆(Cl)
(2)

A higher Dunn Index suggests well-separated and com-
pact clusters. We evaluated the Dunn Index over a range of
k values (from 2 to 6) using our KMeans model.

Figure 7. Dunn Index vs. Number of Clusters k for Hindi songs.

Though computationally expensive, the Dunn Index re-
inforced the elbow method’s selection in most language
datasets, validating our cluster count choices.

4.1.5 Language-Based Clustering Models

Finally, for each language (Hindi, Tamil, English, Korean,
and Unknown), the scaled feature set was passed through
the custom KMeans model with automatic k selection. The
model stored the resulting centroids and cluster labels for
use in the recommendation phase. These models were later
used to find the input song’s cluster and perform intra-
cluster similarity comparisons.

• Centroid Initialization: KMeans++
• Cluster Count Selection: Elbow Method using

WCSS
• Convergence Criteria: Tolerance threshold of 1 ×
10−4

• Validation Metric: Dunn Index
This K-Means clustering approach allowed the system to
form coherent groupings of songs, serving as the backbone
for meaningful, context-aware music recommendations.

4.2. DBSCAN Clustering

DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) was also applied to the Kernel PCA-
reduced dataset. It does not require the number of clusters
to be specified beforehand and can identify outliers, but is
sensitive to its hyperparameters — especially the ‘epsilon‘
value.

To optimize DBSCAN, we used the Elbow Method to
find an appropriate epsilon. However, DBSCAN struggled
with the dataset. When applied to 2D Kernel PCA-reduced
data, it failed to form meaningful clusters and mostly clas-
sified points as outliers.

Figure 8. DBSCAN on 2D Kernel PCA-reduced data. Most of the
points are labeled as outliers, with very few clusters formed.

We determined the optimal ‘epsilon‘ by plotting the dis-
tances to the k-th nearest neighbor and locating the inflec-
tion point:



Figure 9. Elbow Method to determine optimal epsilon for DB-
SCAN. The ”knee” in the curve indicates the best choice.

Next, we applied DBSCAN on data reduced to 4 dimen-
sions using Kernel PCA, expecting more separation power.
While it formed some clusters, the results were still not as
meaningful as K-Means.

Figure 10. DBSCAN on 4D Kernel PCA-reduced data. Clusters
formed are still sparse, and many points remain unclassified.

Another elbow plot was generated using the 4D-reduced
data to find the optimal epsilon again:

Figure 11. Optimal epsilon determination for 4D DBSCAN using
Elbow Method.

Despite these efforts, DBSCAN did not yield meaning-
ful clustering results for our dataset. The model often clas-
sified a majority of points as noise or formed just one or two
clusters. Hence, we opted for K-Means, which performed
significantly better in identifying meaningful groupings.

K-Means clearly outperformed DBSCAN in this context
and was chosen for the final recommendation system.

5. Recommendation using Cosine Similarity

Once clusters were formed, cosine similarity was applied
to find songs similar to a given input song within the same
cluster. This method ensures that the recommendations are
both contextually and sonically aligned with user prefer-

ences.

cos(θ) =
A ·B

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A
2
i ·

√∑n
i=1 B

2
i

(3)

6. Why Cosine Similarity Over KNN
In music recommendation, K-Nearest Neighbors

(KNN) with Euclidean distance is sensitive to magnitude-
based differences in features like tempo or loudness, which
may not align with perceptual similarity. Cosine simi-
larity,measures the angle between vectors, capturing di-
rectional similarity in feature space. This makes it ideal
for audio features such as energy, danceability, or valence,
where relative patterns are more important than absolute
values. Coupling K-Means clustering with cosine similar-
ity allows for efficient, high-dimensional similarity match-
ing within clusters, leading to more context-aware and mu-
sically coherent recommendations.

7. Song Recommender Function
The SongRecommender class is a custom recommen-

dation system designed to suggest musically similar tracks
based on an input song’s audio features.

The system avoids recommending the input song itself
(based on normalized name matching) and returns the top-
n most similar tracks from the cluster. For example, Ke-
sariya and Kesariya from(”Brahmastra”) are the same ex-
act songs. Only the songs within the identified cluster are
considered for recommendation using Cosine similarity is
computed between the input vector and each song in the
same cluster to rank them based on similarity. For each se-
lected song, relevant metadata such as track name, artist,
track URL, artwork URL, and language is retrieved using
the original indices passed to the function.

8. Spotify API Integration and Access Limita-
tions

The integration of the Spotify Web API was initially pro-
posed to dynamically fetch metadata and audio features for
a broader range of songs, with the aim of generalizing the
recommendation system beyond the static dataset. Specif-
ically, the approach intended to retrieve real-time informa-
tion based on track names and artist identifiers by querying
Spotify’s endpoints for audio-features and track
metadata.

However, during implementation,One major issue we
faced is that although we are able to retrieve the track IDs
successfully, repeated requests to the API, particularly for
songs in Indian regional languages resulted in HTTP 403
Forbidden errors. This status code, returned consistently
despite valid authentication credentials, indicates that Spo-
tify’s licensing and content access policies explicitly restrict



certain tracks, particularly independent and region-specific
songs that are not globally licensed or fully indexed in Spo-
tify’s content database.

As a result, the system design was revised to operate
solely on our dataset of pre-fetched tracks for which audio
metadata was already available. This limitation confines the
recommendation scope to a fixed set of songs but ensures
reliable functionality without dependency on external API
availability .

9. Results and Discussion
The use of Kernel PCA + K-Means provided clear clus-

ter separation as shown in the figures. Within each clus-
ter, cosine similarity was effective in finding similar songs,
providing personalized recommendations based on a single
input track.

The system’s performance was evaluated qualitatively by
testing different songs as input and comparing the recom-
mended songs. The results consistently aligned well with
musical features and genre preferences.

10. Future Work
While the current system performs well in identify-

ing and recommending similar songs across multiple lan-
guages, there are several directions in which the system can
be enhanced:

• Deep learning for audio feature extraction: Deep
learning techniques like CNN can be used to extract
audio features from audio files and these features are
then passed to Clustering algorithms for song predic-
tion.

• Integration of user interaction data: Incorporating
user listening history will help us to give more person-
alized recommendations.

• Genre classification: Explicit genre labels and sub-
genre detection can guide recommendations and fur-
ther improve cluster formation.

11. Conclusion
We successfully built a music recommendation engine

tailored to multilingual songs using unsupervised learning.
Kernel PCA followed by K-Means yielded distinct group-
ings, and cosine similarity refined recommendations within
each group. Future work could include deep learning-based
audio embeddings or user interaction data for even more
personalized results.

Contributions
• Saher Dev: Implemented K-Means Clustering from

scratch with K-Means++ for centroid initialization,

Cosine Similarity logic, and the Song Recommender
function. Contributed to the Report, Web Page, Spot-
light Video, and Minutes of Meetings.

• Vaibhav Garg: Preprocessed the dataset, imple-
mented dimensionality reduction techniques and DB-
SCAN clustering. Continuously evaluated model per-
formance and contributed to the Report and Spotlight
Video.

• Tanisha Sonkar: Designed the UI, implemented full
stack frontend-backend integration using Flask, gener-
ated pickle files and handled user query logic via the
Song Recommender Function. Contributed to the Pre-
sentation, Spotlight Video, and Web Demo.

• Swayam: Implemented K-Nearest Neighbors and DB-
SCAN algorithms from scratch. Contributed to the
Presentation for the Spotlight Video.

• Arnav Kataria: Built and integrated the entire fron-
tend. Contributed to PCA, Cosine Similarity algo-
rithms from scratch, and Minutes of the Meetings.

Use of Google Cloud
Most Development such as clustering and recommenda-

tion logic, was done using Google Colab, which offered a
collaborative and GPU-enabled environment. We intend to
deploy our final web-based music recommendation system
using Google Cloud Platform (GCP) via Cloud Run or
App Engine, ensuring scalable & serverless hosting. Ad-
ditionally, Google Cloud Storage may be used to store
preprocessed datasets and model files. This integration
supports modern deployment practices and aligns with the
course’s encouragement to leverage Google Cloud services.

References
[1] Scikit-learn Documentation. https : / /

scikit-learn.org/

[2] Spotify Web API. Official Developer Documenta-
tion. https://developer.spotify.com/
documentation/web-api/

[3] Vaibhav Garg, Saher Dev, Swayam, Arnav Kataria,
Tanisha Sonkar. PRML Project: Multilingual Music
Recommendation System. GitHub Repository. https:
//github.com/philnumpy/PRML-PROJECT

[4] Lance Galletti. KMeans From Scratch. Medium Arti-
cle. https://medium.com/@gallettilance/
kmeans-from-scratch-24be6bee8021

[5] IBM Cloud Education. K-Means Clustering Explained.
IBM Think. https://www.ibm.com/think/
topics/k-means-clustering

https://github.com/saherdev017
https://github.com/philnumpy
https://github.com/Tanisha110
https://github.com/Swagswayam
https://github.com/arnavkataria26
https://scikit-learn.org/
https://scikit-learn.org/
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://github.com/philnumpy/PRML-PROJECT
https://github.com/philnumpy/PRML-PROJECT
https://medium.com/@gallettilance/kmeans-from-scratch-24be6bee8021
https://medium.com/@gallettilance/kmeans-from-scratch-24be6bee8021
https://www.ibm.com/think/topics/k-means-clustering
https://www.ibm.com/think/topics/k-means-clustering

	. Introduction
	. Dataset
	. About the Dataset
	. Data Preprocessing
	. Dataset Features

	. Dimensionality Reduction
	. Principal Component Analysis (PCA)
	. Kernel PCA with RBF Kernel
	. Comparison

	. Clustering Approaches
	. K-Means Clustering
	K-Means++ Initialization
	Custom K-Means Implementation
	Selecting Optimal Number of Clusters
	Dunn Index for Cluster Validation
	Language-Based Clustering Models

	. DBSCAN Clustering

	. Recommendation using Cosine Similarity
	. Why Cosine Similarity Over KNN
	. Song Recommender Function
	. Spotify API Integration and Access Limitations
	. Results and Discussion
	. Future Work
	. Conclusion
	References

